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1. Overview
In the supplementary material we present the following;

• Two variants of the solver for pose estimation with
known gravity direction or unknown scale (Section 2)

• Explanations on how to fuse the pose from non-
orthogonal maps (Section 3)

• Explanations on the map coordinate system’s impact
on the 1D pose ambiguity (Section 4)

• Additional results from the noise/outlier sensitivity ex-
periment on synthetic data (Section 5)

• Additional results for the 7 Scenes dataset (Section 6)

• Experiments with known vertical direction (Section 7)

• Experiments with unknown scale (Section 8)

• An additional qualitative analysis of the results with
disjoint queries (Section 9)

• Additional experiments for trajectory-based queries
using higher quality relative poses (Section 10)

2. Variants of the solver
2.0.1 Known Gravity

In the case of known gravity, we can assume that both the
query and the map are gravity-aligned. This reduces the
remaining rotation to be around the gravity direction,

R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . (1)

The localization problem is now asymmetric in the coordi-
nate axes, because only the two that are orthogonal to the
gravity (x and y) depend on the rotation angle, i.e.

(cos θ, 0,− sin θ)Xq + t1 = xm (2)
(sin θ, cos θ, 0)Xq + t2 = ym (3)

(0, 0, 1)Xq + t3 = zm (4)

The localization server storing the z-offsets can thus com-
pute the translation offset t3 from a single point, ignor-
ing the rotation. For the two other coordinate-servers, the
problem reduces to a two-dimensional version of the full-
rotation case, where we are estimating a two-dimensional
unit vector r̂ = (cos θ,± sin θ). The methods from Sec-
tion 3.3.1 and Section 3.3.2 in the main paper generalize
directly to the 2D-case with the only difference of requiring
fewer points (2 instead of 3) for the minimal sample and
yielding fewer roots in equation (12) in the main paper. We
present experiments for this setup in Section 7.

2.0.2 Unknown Scale

So far we have assumed that the query point cloud and the
map have a consistent scale. For settings where it is not
possible to estimate metric scale on the client side, it is also
possible to solve for the relative scale jointly with the cam-
era pose. In this case, we simply get

srTX + t = x, rTr = 1 , (5)

where s is the relative scale between the query and map.
Reparameterizing in terms of v = sr, we get an uncon-
strained problem. This allows to solve linearly for (v, t)
from four correspondences. The non-minimal problem sim-
plifies greatly as it becomes a linear least squares problem.
Experiments with this method are shown in Section 8.

3. Non-Orthogonal maps
For simplicity we only show the case of orthogonal map

directions in the paper. However, the method works just as
well with non-orthogonal maps. Given the independent unit
vectors e1, e2, e3 that determine the map directions, we can
start from the original 3D alignment constraint

RXq + t = Xm ⇒ eT (RXq + t) = eTXm . (6)

This leads to the formulas for the obtained partial poses

r̂k = RTek, t̂k = eTk t, k = 1, 2, 3 . (7)
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Figure 1. Examples for pose ambiguity in 1D localization: Out
of all images (blue) we highlight the ones that are localized close
to a given 1D offset (red). These images lie close to a 3D plane
that is parallel to the map planes. Left: a horizontal localization
direction (vertical in the figure). Right: (3D) Vertical localization
(orthogonal to the figure plane). Since the scene is relatively flat,
almost all images localize to a similar 1D offset.

To recover the full pose in the original reference frame we
get

R̂ =
[
r̂1 r̂2 r̂3

]
= RT

[
e1 e2 e3

]
= RTE (8)

and finally

R =
(
R̂E−1

)T
. (9)

Similarly,

t̂ =

t̂1t̂2
t̂3

 = ET t⇒ t = E−T t̂ . (10)

This construction works for any set of linearly independent
(but necessarily orthogonal) unit vectors e1, e2 and e3.

4. Pose ambiguity
For a given scene we can define a measure for the 1D

pose ambiguity as the number of valid image poses that lo-
calize to the same 1D location. This is visualized in Fig-
ure 1. For example, assuming a scene that is very stretched
out along a single dimension, only very few valid poses will
be close to any 1D location along this dimension. In con-
trast, for a planar scene almost all valid poses will be close
to a certain 1D location in the vertical direction as shown
in Figure 1 (right). Therefore, the choice of the map co-
ordinate system has an impact on the ambiguity of any 1D
localization.

5. Additional Results on Synthetic Data
In this section we report additional metrics/plots from

the experiment on synthetic data in the main paper. Please
refer to the main paper for details on the experimental setup.
To have a metric which includes both the rotation and trans-
lation, we also compute the average corner displacement,

Scene Method

Point-to-Point [4] Point-to-Plane [3] Ours

τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3

Alamo 62.9 92.2 97.8 38.6 84.9 95.0 58.6 88.5 95.1
Gendarmenmarkt 32.9 72.2 86.6 15.0 61.5 83.9 18.2 54.6 76.2
Madrid Metropolis 37.2 79.2 93.1 18.6 73.0 89.4 30.7 70.1 82.8
Roman Forum 46.1 82.1 93.1 28.7 76.8 91.1 34.7 73.5 87.5
Tower of London 36.8 76.0 92.9 19.2 68.6 88.7 25.8 61.7 81.4

τ1 = (0.05m / 2◦) τ2 = (0.2m / 5◦) τ3 = (0.5m / 10◦)

Table 1. Localization with Known Vertical: The table shows the
recall for different combined error thresholds τ1, τ2, τ3.

i.e. we take the eight corners of the unit cube and trans-
form them with the ground truth pose and then back with
the estimated pose. The reported error is then the average
displacement of the corners. Figure 2 shows additional met-
rics for the varying noise experiment. In Figure 3 we show
the recall curve for the rotation error for three fixed out-
lier ratios (50%, 60% and 70% outliers). The figures show
that compared to the random-plane method from Speciale et
al. [3], the proposed method is more sensitive to noise but
more robust to outliers.

6. 7 scenes Precision/Recall
Figure 4 shows the Precision/Recall plot for the

7 scenes [2] scenes that are omitted in the paper.

7. Known Gravity Experiments
Many modern handheld devices (e.g. phones) have an In-

ertial Measurement Unit (IMU) that can provide estimates
of the vertical (gravity) direction. As shown in the main pa-
per, this knowledge can be used to simply the localization
problem as it constrains the relative rotation between the
query and the map. In this section we evaluate the impact
on the localization accuracy of adding these measurements.
We replicate the setup for the experiment on the 1DSfM
dataset [5] in the main paper. Since the dataset only pro-
vides image data, we synthesize the gravity measurements
using the ground truth reconstruction. Table 1 shows the
percentage of successful localizations for different thresh-
olds. Adding the additional prior on the relative rotation im-
proves the localization accuracy. This is partly since there
are fewer pairwise constraints on the rotation matrix that we
are ignoring in the distributed approach.

8. Unknown Scale Experiments
For each query image we uniformly sample a scaling fac-

tor in the interval [0.1, 10.0] and transform the query point
cloud accordingly. We compare our results against point-
to-point matching also estimating the unknown scale, but
do not include localization from random plane maps as we
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Figure 2. Evaluation on Synthetic Data. The plots show the average and median (dashed) error for various noise levels. For details on the
experimental setup see the main paper. We also report the corner error as defined in Section 5. The bottom right figure shows a histogram
of the rotation errors for σ = 0.1.
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Figure 3. Evaluation on Synthetic Data with Outliers. The figures shows the recall curve for the rotation error with fixed outlier ratios
(50%, 60%, and 70%). See the main paper for details on the experimental setup.
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Figure 4. Precision/recall for the remaining 7 scenes scenes.

do not have a solver available for this case. For consis-
tency, we use the same RANSAC inlier thresholds as for
the experiments with known scale. Table 2 shows the recall
for the different error thresholds. Additionally estimating
the query scale significantly limits the pose accuracy. Note,

however, that in most cases the method does not fail com-
pletely. Most queries can still be localized within a few
meters and the method can therefore still be used for ap-
proximate localization. For the tested datasets our method
achieved a recall of at least 57% and 73% for error thresh-
olds of (5m/10◦) and (10m/10◦), respectively. With the
additional position refinement, this increased to 79% and
83%. Interestingly, the pose accuracy of the point-to-point
method even increases when allowing to change the scale,
indicating that this can account for noise in the data. (Note
that the estimated scales with this method still lie very close
to the ground truth and we therefore do not expect a problem
with our experiment data.) Allowing the additional degree
of freedom leads to slightly increased errors in the rotation
orthogonality, i.e., we observed larger differences between



Scene Method

Point-to-Point [4] Ours Ours + Refinement

τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3

Alamo 40.9 82.9 93.8 3.7 13.1 23.4 5.6 18.5 28.9
Gendarmenmarkt 17.6 57.7 77.1 5.0 22.0 41.8 2.1 22.1 47.8
Madrid Metropolis 15.7 57.7 74.5 3.3 17.5 40.5 1.8 28.8 52.2
Roman Forum 25.4 69.4 84.5 5.5 24.7 42.9 6.1 28.3 50.3
Tower of London 23.2 63.4 80.3 5.9 24.0 47.0 5.7 31.9 55.6

τ1 = (0.05m / 2◦) τ2 = (0.2m / 5◦) τ3 = (0.5m / 10◦)

Table 2. Results with unknown query scale: Estimating the scale
together with the pose removes constraints in the partial localiza-
tion problems. This leads to increased noise in the estimated ro-
tations. We can improve the result by querying just the positions
with a scaled and aligned query cloud after merging the partial ro-
tations, denoted as Ours + Refinement in the table. However, this
could leak additional information to the servers.

the estimated partial rotations and the corresponding rows
of the projected rotation matrix. We can improve the accu-
racy for the medium and large error threshold by estimating
just the 1D positions again after assembling the full rotation
matrix and aligning the query to the map accordingly. How-
ever, this might provide additional information to the server
which is not desired. Also, it reduces the recall for very
small error thresholds. This is most likely due to adding
an additional approximation even for the easy cases that al-
ready provide high quality positions after the initial query.

9. Qualitative Analysis of Disjoint Queries
We perform an additional qualitative analysis of the dis-

joint query experiments performed with the RobotCar [1]
dataset. Figure 5 shows the obtained 2D positions with dif-
ferent query distances. The queries were performed by ei-
ther splitting the query point cloud of a single pose, or by
using point clouds corresponding to poses either 4m, 10m,
or 50m driven distance apart for the two partial queries. We
then used the INS data provided by the dataset to fuse the
results. It is clear that the quality of the estimated poses
degrades with larger driven distance. While the single pose
queries are generally very close to the ground truth and only
experience some noise in different parts of the map, queries
with 50m distance in between show clear systematic errors
in most areas.

10. High Quality Trajectory Experiments
When using multiple query images and assembling their

geometric constraints using estimated relative poses, the
achieved localization accuracy highly depends on the ac-
curacy of those relative poses. In the experiment presented
in the main paper we used the raw INS data that is provided
as part of the RobotCar [1] dataset. We observed that these
poses are often not accurate enough to show the full poten-

tial of our method. We therefore performed two additional
experiments to minimize the impact of these inaccuracies.
(1) We initialize the trajectories between both query images
using the INS data, but then perform a refinement step based
on the visual correspondences between the images of the
query sequence. (2) We directly use the ground truth image
poses to compute the relative pose to eliminate the impact
of the trajectory estimation completely and present an up-
per bound on the localization accuracy. The precision-recall
plots are shown in Figure 6. Using the refined poses we can
achieve a significantly higher recall with small errors, but
this difference decreases with increasing errors. When us-
ing ground truth relative poses this effect is even stronger.
The lower recall within 20 difference of our method com-
pared to the point-to-point method can in parts be explained
with the higher number of required constraints. Our method
requires at least 3 correspondences in each query image,
whereas point-to-point only requires 3 correspondences in
total.

11. Datasets
We used three publicly available datasets in the pre-

sented evaluations. The 7 scenes dataset1 [2] is licensed un-
der a Microsoft Research License Agreement (MSR-LA).
The RobotCar dataset2 [1] is licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 In-
ternational License (CC BY-NC-SA 4.0). For the 1DSfM
dataset3 [5] the authors do not specify a license.
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Figure 5. Visualization of the positions from disjoint queries: The figure shows the estimated poses for the disjoint query experiments
on the RobotCar dataset. The two query point clouds for the partial localizations were either taken from a single query pose, or from
separate poses 4m, 10m, or 50m driven distance apart (left to right). The quality of the pose estimates degrades with increasing distance
between the two query poses.
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(a) Precision-recall using refined INS trajectories

0 2 4 6 8 10 12 14 16 18 20

Position error [m]

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
e
c
a

ll

4m     

10m     

50m     

Ours

Point-to-Point

(b) Precision-recall using ground truth trajectories

Figure 6. Trajectory-based queries with improved trajectories:
Instead of using the raw INS signal to determine relative poses
between query images, we run experiments with the INS poses
refined using visual correspondences in the query images (6a) or
ground truth relative image poses (6b). The plots show the local-
ization precision-recall with different driven distances between the
two query images.
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