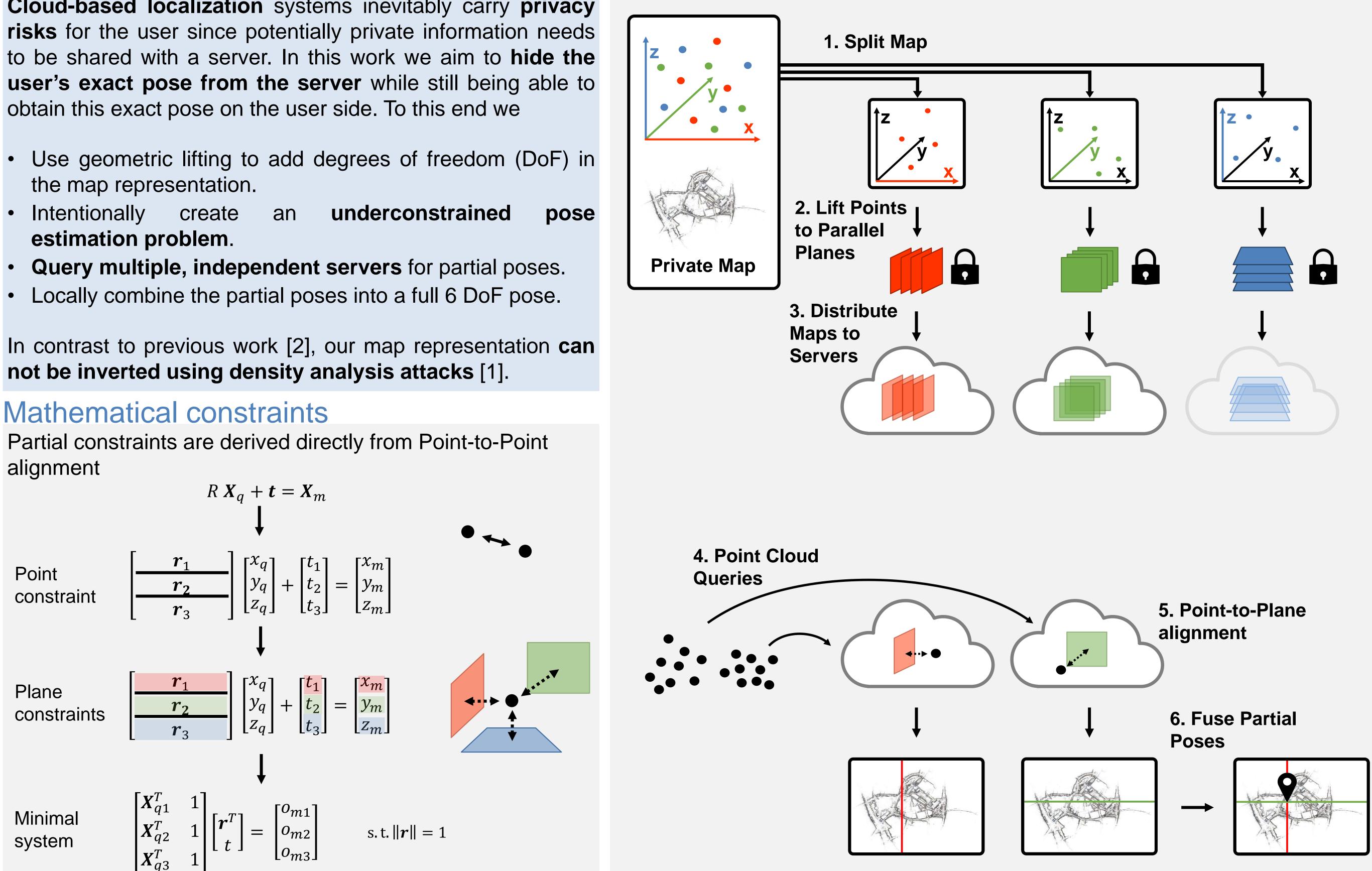


Introduction


Cloud-based localization systems inevitably carry privacy obtain this exact pose on the user side. To this end we

- the map representation.
- underconstrained Intentionally create an estimation problem.
- Locally combine the partial poses into a full 6 DoF pose.

not be inverted using density analysis attacks [1].

Mathematical constraints

Partial constraints are derived directly from Point-to-Point alignment

Privacy Preserving Partial Localization

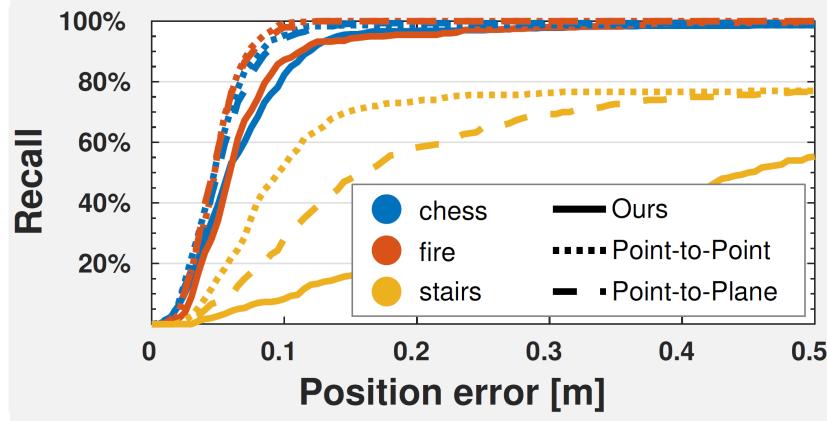
Marcel Geppert¹

Viktor Larsson^{1,2} ¹ETH Zurich

²Lund University

Method Overview

Johannes L. Schönberger³ ³Microsoft


Marc Pollefeys^{1,3}

SfM Query Results

Scene	Method									
	Point-to-Point [5]			Point-to-Plane [4]				Ours		
	$ au_1$	$ au_2$	$ au_3$	$ au_1$	$ au_2$	$ au_3$	τ_1	$ au_2$	$ au_3$	
Alamo	21.3	60.8	86.1	12.6	54.5	86.1	22.1	62.6	79.5	
Gendarmenmarkt	7.7	40.8	72.4	4.6	33.4	61.6	5.6	31.1	56.7	
Madrid Metropolis	4.7	32.1	68.2	1.8	23.0	59.9	6.6	36.1	62.8	
Roman Forum	11.3	53.0	79.2	7.6	47.5	76.8	12.2	43.8	66.8	
Tower of London	5.9	43.7	73.9	3.3	37.1	72.3	8.7	37.1	58.9	
		(0.0			(^、			<u> </u>	

 $\tau_2 = (0.2m / 5)$ $\tau_3 = (0.5m / 10)$ $\tau_1 = (0.05m / 2)$

Active Depth Query Results

Conclusion

- and query between three independent servers.
- The user's exact pose remains hidden from the servers.
- Prior knowledge allows pose estimation even from only two servers.
- baselines.

While the approach still experiences some practical disadvantages, we hope that this work further highlights the importance of privacy in visual localization and motivates future research in this area.

References

- [2] Pittaluga et al., Revealing scenes by inverting structure from motion reconstruction, CVPR 2019
- [3] Speciale et al., Privacy Preserving Image-Based Localization, CVPR 2019
- [4] Speciale et al., Privacy preserving image queries for camera localization, ICCV 2019

Limitations

- Query point clouds carry the risk of revealing scene appearance [2].
- Collaborating servers can still learn the user's location.
- Servers could accumulate query point clouds over time to circumvent lifted representation.
- Fewer constraints obtained.

• We present a cloud-based localization system that divides the map representation

• The system exhibits only small reductions in accuracy compared to established

[1] Chelani et al., How Privacy-Preserving are Line Clouds? Recovering Scene Details from 3D Lines, CVPR 2021 [5] Umeyama, Least-squares estimation of transformation parameters between two point patterns, PAMI 1991